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ON UNDERWATER DETONATIONS, I. A NEW METHOD FOR PREDICTING THE
CJ DETONATION PRESSURE OF EXPLOSIVES

R. Gill, L. Asaoka and £. Baroody
Syntnesis and Formulations Branch, R11
Naval Surface Weapons Center
Indian Head, Maryland 20640
ABSTRACT
The experimental detonation pressure of explosives has been found to

correlate reasonably well with the theoretical specific impulse and density of
these compositions, Two data sets were subjected to linear regression
analysis, giving a numbeE of possible correlations; however, the equation
containing Isp x Density®, a Kamlet-Jacobs like term, was found to show the
best relationship for predicting, today's plastic bonded explosives. The
complete equation is:

Pexptl = 44.4 (Isp x Densityz) -21

INTRODUCTION

Explosives being developed for military use in recent years have
consisted of polymeric binder matrices, filled with energetic ingredients.
The multi-component, non-homogeneous compositions which have been and are
being developed, especially those containing metal powders, have non-ideal
detonation properties (an ideal explosive is one that can be described
adequately by the steady-state theory)(l). The Kamlet-Jacobs (KJ)(Z)
simplified computation method can predict the detonation properties of ideal
explosives, but cannot always predict those of the less ideal ones, and it
offers little possibility of being used to accurately predict the properties
of metallized compositions. (Underwater explosives containing metal powders
are of special interest to the Navy due to their potential taryet damage
enhancement, )

The authors of this paper, propellant-oriented chemists, who in recent

years became more involved in explosive development, have observed the
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remarkable similarity between the thermodymamic properties needed to calculate
the performance characteristics of propellants and those of explosives. This
similarity is especially evident between the Phi term (.) in the Kamlet-Jacobs
equation and the specific impulse (Isp) in the propellant calculations.
Therefore, it appeared reasonable to examine the suitability of using specific
impulse (Isp}, which is easily obtained from the PEP(a)* computer code, to
correlate the detonation properties of explosives. This paper reports the
results of our study into the relationship between Isp and detonation
pressure. Later papers will describe how Isp is related to detonation
velocity and to cylinder energy. We hope to eventually use the Isp
calculations for predictiny the explosive performance of metallized
compositions. (PEP computer calculations have been used for many years by
propellant formutators to obtain rocket performance parameters of metallized

propellants.)

*See appendix for an explanation of the PEP code and a sample printout.
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DETONATION CALCULATIUNS

The Kamlet-Jacob (KJ) equatijon accurately predicts the measured
detonation pressure for a larye number of explosive compounds. The KJ

equation is given by:(z)

PCJ=KJu° 2
where
K = 15,58
2 = K] 1/2(q)1/2 = pni
v loading density of explosive, g/cc

Pcy = Chapman-Jouguet Detonation Pressure in Kilobars

N = number of moles of gas from one gram of explosive

MW = average molecular weight of gases produced during explosion

Q = heat of detonation in cal/g, calculated using the Hy0/C0p arbitrary

First, we wanted to see if the Isp could be directly substituted for the
phi in the equation: P(exptl) = phi x densityz.

Usiny the P(exptl), phi, and density data presented in Table 1 {this data
is from the original paper by Kamlet and Dickinson published in 1968(4) and is
composed mostly of pressed and melt-cast ideal explosives), and the Isp of the
compositions calculated from the PEP code; the phi x densityz, and the Isp x

density2

of a number of explosives were plotted against their respective
experimental detonation pressures {see Figures 1 and 2). A linear regression

analysis of the data gave the results shown in Table 2.
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A very yood correlation was observed for both relationships, although the
KJ equation gave a slightly better Rz-correlation coefficient and standard
error.  The validity of using the Isp in place of the phi for determininy
detonation pressure was now clearly demonstrated.

Next, we wanted to find out if the exponent of 1 on the Isp and the
exponent of 2 on the density gave the best fit to data. This time the linear
regression analysis was conducted on the data in Table 1, using an equation of
the form 1n P(expt]) =N In (Isp) + M In (Density) + intercept. The results
presented below

N = 1.51 £ 0.18 M=1.95 1 0,11
indicate that the exponents should be approximately 1.5 for Isp and 2.0 for
density.

A similar Vinear reyression analysis was then conducted on another data
set. This data was obtained from the LLNL (Explosives Handbook(®) and is
shown in Table 3. Like Table 1, Table 3 is composed of some pressed and melt-
cast explosives; but unlike Table 1, it also contains a number of plastic-

bonded compositions (PBXs). (PBXs are representative of todays' state-of-the-

art military explosives).
These exponents were found to be quite different:
N = 0.93 + 0.21 M=2.251¢0.11

The Table 3 data-set indicates that the exponent of the Isp is
approximately 1.0 and the exponent of the density is approximately 2.25.

A linear regression analysis was then conducted on the relationships as
determined from the In-In analyses of data from both Tables 1 and 3. Table 4
shows these results. Indeed, the term Isp1-5 X densit:y2~0 did correlate as
well as the Phi x density2 with the experimental detonation pressures given in

Table 1. But it showed the poorest correlation for the LLNL data in
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Table 3. Un the other hand, the term Xspl'0 densityz'25 yave the best
correlation with the data in Table 3, but gave the least correlation for the
data from Table 1. Because all tnese terms correlated reasonably weii with
the experimental detonation pressure (R%>0.95), and since Isp x density2 was
an acceptable compromise between the two sets of exponents, the exponents 1
and 2 were chosen. Alsg, because Table 1 contained mostly ideal explosive
compositions, while Table 3 contained many less ideal compositions, e.g. PBX-
explosives formed from energetic solids and binder ingredient; this equation
was selected as more representative of today's state-of-the-art composite
compositions. Thus, the equation for calculating the detonation pressure from

the Isp x density2 function was derived from the data in Table 3.

p(exptl) = 44,4 Isp x density2 - 21

The validity of this relationship can be better demonstrated by plotting
the various variables against the experimental detonation pressures given in
Table 3. The four plots (Fiyures 3, 4, 5 and 6) show the Isp, density, Isp x
density, and the Isp x densityz, respectively, as a function of the detonation
pressure. Fiyure 3 demonstrates that the Isp alone showed some correlation.
Figure 4 shows that the density alone gave a much better correlation but the
data is quite scattered, In Figure 5, where the term Isp x density is used,
we see a significant improvement in the correlation, although LX-17, which has
a large density and a relatively small Isp, is still far from the line,
Figure 6 shows the result of using Isp x densityz. In this piot, all the
compositions are reasonably close to the least squares line and exhibit a R2-

correlation coefficient of 0.984.
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The Isp correlation works well, although the PEP computer cnde uses the
assumption that the products are ideal gases, and the Isp calculation is based
on rocket motor pressure conditions {expansion from 100U to 14.7 psi). Gases
at the very high pressures of a Chapman-dJouguet (CJ) detonation are not
considered ideal, but Fickett and Davis(6) state: “Little is known about the
properties of gases in the neighborhood of the CJ point of liquid and solid

explosives."”

CONCLUSTON
A novel method has been found to predict the Chapman-Jouguet detonation
pressure; usiny the theoretical rocket performance calculations from the PEP
computer code. This method has been shown to agree with the earlier work of
KJ for ideal explosives. The correlation obtained through the use of the PEP
code have been extended to composite explosives, e.g. binders filled with

solid explosive particulate material.
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Uesignation

BTF

Comp 8
Cyclotol
EDNA
FEFO

HMX
LX-04
LX-10
LX-14
LX-17

NG

NM

Octol
PBX-9010
PBX-9011
PBX 9404
Pentolite
PETN

RDX
TAT8
TETRYL
TNB
TNM
TNT
CEF
Estane
KEL-F

Viton A

GLOSSARY

Benzo-tris [1,2,5]-oxadiazole-1,4,7-trioxide
RDX/TNT/WAX (63/36/1)

ROX/TNT (75/25)

Ethylene Dinitramine, (1,2-di-{aitraminc)ethane}
1,1'-[Methylene-bis-(Oxy)]-Bis-[2-fluoro-2,2-dinitroethane]
Uctahydro~-1,3,5,7-tetranitro-1,3,5,7-tetrazocine
HMX/Viton A (85/15)

HMX/Viton A (95/5)

HMX/Estane (95.5/4.5)

TATB/KEL-F 900 (92,5/7.5)

1,2,3-Propanetriol trinitrate

Nitromethane

HMX/TNT (75/25)

RDX/KEL-F (90/10)

HMX/Estane (90/10)

HMX/NC/CEF (94/3/3)

PETN/TNT (50/50)
2,2-8Bis{(Nitroxy)methyl]-1,3-propanediol dinitrate
(Pentaerythritol tetranitrate)
Hexahydro-1,3,5-trinitro-1,3,5-triazine
2,4,6-Trinitro-1,3,5-benzenetriamine
N-Methyl-N,2,4,6-tetranitrobenzenamine
1,3,5-Trinitrobenzene

Tetranitromethane

2-Methyl-1,3,5-trinitrobenzene
Tris-b-chtoroethylphosphate

Polyurethane solution system from B. F. Goodrich Co.
Chlorotrifluoroethylene/vinylidine fluoride copolymer (3/1) from
3M Company

Vinylidine fluoride/hexafluoropropylene copolymer (60/40) from
DuPont Chemical Co.
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AFFENDIX: THE PEFP (UDE

Trne Propellant Evaluation Program (PEP) wae develored by D.F.
Cruice of Naval Weapons (Center, China Lake. It assumes tnat the yases
are 1deal.lhe products are calculated using a free energy minimzation
te-nnique. Fairst, the enthalpy 1s caiculated for the propellant arx
1080 ps1y thern the prcpellant 15 burned and the gases expanded to 14.7
pei. The enthalpy is again calculated for tni gases at this lower
pressure. Ihis dafference in the two enthalpies is proportional to
the work dune by the expanding gases and is expressed as the specific
impulses ISP, The followind information is needed to run the PEPR

1. heat ot formation of each ingredient
Z. atomic tormula of each ingredient

3. composition of propellant or explosive

A sample calculation is given for the explosive LX-04, which is
composed of 85% HMX and 15% Viton A.

LXB4 MW C N O F
HMX .008 .004 .088 .9966.0008 83-00 61, .8487
VITON A .804 .0850.2000.008 .P079 15.088  -1881. 8650
BGRAM ATON AMOUNTS FOK PROPELLANT WEIGHT OF 108.888 1.8800
8 (H) () (N ) (F )

2.576587 1.5,48873 2.295963 2.295963  .521159

T T(F) F(ATHY  P(PSI) ENTHALPY ENTROFY CP/CV GAS  RT/V
2898. 4757. 68.82 1B80.88 -21.87 245.98 1.2584 4.248 15.978

1.33953 €O 1.14743 N2 252993 H20 252194 HF
-48452 H2 .28926 C02 01979 H .088661 HO
1.80E-03 NO 1.78E-84 0 1.178-84 F 7.55E-85 02

4.,33E-85 NH3 3.63E-85 CHO 3.36E-85 CNH

T(K) T(F) F(ATM)  P(PSI) ENTHALPY ENTROPY CP/CY GAS RT/V
1205. 1710, 1.88 14,78 -91.31  245.98 1.380846 4.246 236

1.14797 N2 1.14265 CO 68872 H2 .52116 HF
48428 CO2 .34891 H20 880883 NH3 80002 CH4

BHYPOTHESIS IAPMULSE  GAMMA THR. T THR. P CF  ISP* OPT EX EXH V  RHO-ISP
8 FROZEN 243,58 1.2897 2541, 37.384 1.575 7.63 7843, 459.3
SHIFTING @ 1.2512 2577, 37.73 1.569 196.8 7.81 7910. 463.3

BB00ST VELOCITILS FOR PROPELLANT DENSITY OF .B4888 (S5.6. OF ({.B84

NOTE: Sample Caleulation:

i1b sec 9.807
(Eng!ish to metric) 245.8 Jy—rags¥ “Tooo - 2,410 N :ec
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Experimental Detonation Pressure (KBars)

400

350

300

250 =

200 -

150 =

100 ~

50

2.0

T T 1 T T

1
6.0 10.0 18.0 22.0 26.0

14.0
Phi x (Density)?2

FIGURE 1.
Experimental Detonation Pressure Vs. Phi x (Density)?
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14: 06 16 January 2011

Downl oaded At:

TABLE 2
Linear Regyression Analysis of Data

Std Error
x variable Y variable Intercept Slope Bff* {Kbars)
phi x density? P o0y -8 ¢ 10* 16,42 £ 0.68 0.969 14
Isp x Density’  Proneqy 215+ 14" 428 & 2.2 0951 18

o Lsast-square value of the coefficiert + its standard error
** R¢ = correlation coefficient squared
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